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LIGHT IN VACUUM

Theory of optical polarization

Introduction. In regions empty of matter—empty more particularly of charged
matter—the electromagnetic field is described by equations that we have learned
to write in various ways:

∇∇∇···EEE = 0

∇∇∇×BBB − 1
c
∂
∂tEEE = 000

∇∇∇···BBB = 0

∇∇∇×EEE + 1
c
∂
∂tBBB = 000




(65)

∂µF
µν = 0

∂αε
αρσνFρσ = 0

}
(168)

Fµν = ∂µAν − ∂νAµ
Aν − ∂ ν(∂µAµ) = 0 : arbitrary gauge

↓
Aν = 0 : Lorentz gauge


 (371)

And we have learned that, whichever language we adopt, multiple instances of
the wave equation hover close by. It was Maxwell himself who first noticed that
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equations (65) can be “decoupled by differentiation” to yield six copies of the
wave equation:

EEE = BBB = 000

The manifestly covariant version of Maxwell’s argument is less familiar: to

∂aεarsν · ∂αεαρσνFρσ = 0

bring the identity233

εarsνε
αρσν = 1

g δ
αρσ

ars ≡ 1
g

∣∣∣∣∣∣
δαa δαr δαs
δρa δρr δρs
δσa δσr δσs

∣∣∣∣∣∣
= 1
g
{
δαa(δρrδσs − δσrδρs)

+ δαr(δρsδσa − δσsδρa)
+ δαs(δρaδσr − δσaδρr)

}
and obtain

(Frs − Fsr) + ∂a
{
∂r(Fsa − Fas) + ∂s(Far − Fra)

}
= 0

whence (by the antisymmetry of Fµν)

Fµν = 1
c (∂µjν − ∂νjµ)

↓
= 0 in charge-free space: jµ = 0

Finally, at (371) we obtained four copies of the wave equation by covariant
specialization of the gauge.

We will be concerned in these pages with certain particular solutions of the
preceding free-field equations that bear on the classical physics of light. Two
points should be born in mind:
• All of the equations ennumerated above are satisfied by the Coulomb field

of an isolated charge except at the location of the charge itself . They are
satisfied by the Lorentz transforms of such a field (field of a charge drifting
by), by the field of a static population of such charges, by the magnetic
field of a current-carrying wire except at the location of the wire itself ,

233 For discussion of the “generalized Kronecker deltas” see pages 7–8 in
“Electrodynamical applications of the exterior calculus” (). The notational
resources of the exterior calculus render the following argument—though it
looks here a little contrived—entirely and transparently natural. Incidentally,
g has recently signified magnetic charge, and before that was the name of a
coupling constant: g ≡ e/�c. In the following lines g is restored to its original
meaning: g ≡ det ‖gµν‖.
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by the fields produced by drifting populations of such wires. In none
of those situations are the fields detectable by the apparatus of optics
(photometers, etc.); none of them present the diffraction/interference
phenomena characteristic of wave physics; to each of them the language
of optics would appear alien (except quantum mechanically, where one
attributes electrostatic interaction to an “exchange of photons”). What
we at present lack is a sharp criterion for distinguishing “light-like” from
“other” solutions of the free-field equations.

• We will be studying the physics of light-in-the-absence-of-matter, of light
in vacuuo. But such light is invisible, an inferential abstraction! For it
is only by its interaction with matter (production by radiative processes,
transmission through media, manipulation by lenses/mirrors/filters and
other such devices,detection by eyes/photometers) that we “see” light,
that we become aware of its existence as a fact of Nature—reportedly
the first fact.234 But before we can construct a theory of the light-matter
interaction we must possess a theory of (the electromagnetic properties of)
matter . . . and toward that objective—since matter and most production/
absorption processes are profoundly quantum mechanical—classical
physics can carry us only a short part of the way (yet far enough to
account phenomenologically for most of classical optics).

Nevertheless . . . the ideas to which we will be led are absolutely fundamental to
the physics of light, whatever the depth of the physical detail and conceptual
sophistication with which we elect to pursue that subject.

The physics of light is in several important (but too seldom remarked)
respects “exceptional, surprising.” In order to highlight the points at issue,
which remain invisible until placed in broader context, I will (as I have several
times already) draw occasionally on Proca’s theory of “massive light.”

1. Fourier decomposition of the wave field. On pages 291 & 292 we encountered
several instances of the wave equation

ϕ = 0 i.e.,
{

1
c2 ∂

2
t −∇2

}
ϕ(t, xxx) = 0

It is mathematically natural—alien to the spirit of relativity, but an option
available to every particular inertial observer—to “split off the time variable,”

234 “In the beginning God created the heavens and the earth. The earth was
without form, and void, and darkness was on the face of the deep. Then God
said, ‘Let there be light’; and there was light. And God saw the light, that it
was good; and God divided the light from the darkness. . . ” (Genesis I: 1–4).
For an absorbing account of the philosophical contemplation of relationships
among God, Good and Light that, after more than two millennia, had led by
the 16th Century to the conception of physical space—the non-obvious one we
now take for granted—that “made physics possible” see Max Jammer’s slim
masterpiece Concepts of Space: The History of Theories of Space in Physics
(), with forward by Albert Einstein.
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writing ϕ(t, xxx) = f(t) · φ(xxx). Then

1
c2 f̈ = −k2f and (∇2 + k2)φ = 0

where k2 is a positive separation constant, with the physical dimension of
(length)−2. We are led thus to solutions of the monochromatically oscillatory
form

ϕω(t, xxx) = eiωt · φω(xxx) with ω ≡ kc

where ω can assume any (positive or negative) real value.235

In Cartesian coordinates the

helmholtz equation : (∇2 + k2)φ = 0

reads {
( ∂∂x )2 + ( ∂∂y )2 + ( ∂∂z )

2 + k2
}
φ(x, y, z) = 0

The separation of variables technique can be carried to completion, and yields
solutions of the form

φ(x, y, z) = (constant) · eik1x · eik2y · eik3z

with k2
1 + k2

2 + k2
3 = k2.236 But it has been known since  that separation

can be carried to completion in a total of eleven coordinate systems; namely,

1. Cartesian (or rectangular) coordinates

2. Circular-cylinder (or polar) coordinates

3. Elliptic-cylinder coordinates

4. Parabolic-cylinder coordinates

5. Spherical coordinates

6. Prolate spheroidal coordinates

7. Oblate spheroidal coordinates

8. Parabolic coordinates

9. Conical coordinates

10. Ellipsoidal coordinates

11. Paraboloidal coordinates

235 We make casual use here and henceforth of the familiar “complex variable
trick,” with the understanding that one has direct physical interest only in the
real/imaginary parts of ϕω.
236 Separation of three variables brings only two separation constants into play.
Why, therefore, do we appear in the present instance to encounter three? By
notational illusion. Look upon (say) k2 and k3 as separation constants, and
regard k1 ≡

√
k2 − k2

2 − k2
3 as an enforced definition.
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so the question arises: Why are all but the first largely absent from literature
pertaining to the physics of light? Why do theorists in this area so readily
capitulate to “Cartesian tyranny.” For several reasons:
• In non-Cartesian coordinates the description of ∇2 becomes complicated,

so separation of the Helmholtz equation leads to a system of three typically
fairly complicated ordinary differential equations, the solutions of which
are typically “higher functions” (Bessel functions, Legendre functions,
Mathieu functions, etc.).237 For example (looking only to the simplest
case): in circular-cylinder coordinates

x = r cos θ
y = r sin θ
z = z

the Helmholtz equation becomes{(
∂
∂r

)2 + 1
r
∂
∂r + 1

r2

(
∂
∂θ

)2 +
(
∂
∂z

)2 + k2
}
φ = 0

We write φ = R(r) ·Θ(θ) · Z(z) and obtain

d2R
dr2 + 1

r
dR
dr −

(
α
r2 + β

)
R = 0

d2Θ
dθ2 + αΘ = 0

d2Z
dz2 + (k2 + β)Z = 0


 α and β are separation constants

The second equation gives

Θ(θ) = a2 sin
√
α θ + b2 cos

√
α θ

which by a single-valuedness requirement enforces

√
α = n : 0,±1,±2, . . .

The third equation (no single-valuedness requirement is here in force,
since z is not a periodic variable) gives

Z(z) = a3 sin
√
k2 + β z + b3 cos

√
k2 + β z

For the first equation Mathematica supplies

R(r) = a1BesselI[n, r
√
β ] + b1BesselI[−n, r

√
β ]

237 Details are spelled out in various mathematical handbooks, of which my
favorite in this connection is P. Moon & D. E. Spencer, Field Theory Handbook
(1961).
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• All the coordinate systems listed—with the sole exception of the Cartesian
coordinate system(s)—possess singularities (recall the behavior of the
circular-cylinder and spherical coordinate systems on the z-axis).

• Description of the translations/rotations/Lorentz transformations of
physical interest is awkward except in Cartesian coordinates. Notice in
particular that

φ = (constant) · eiωt · eik1x · eik2y · eik3z

= (constant) · ei(k0x0+k1x
1+k2x

2+k3x
3) with k0 ≡ ω/c

= (constant) · eikx

where kx ≡ kαxα becomes Lorentz invariant if we stipulate that

k ≡



k0 ≡ ω/c
k1

k2

k3


 ≡ (

k0

kkk

)
transforms as a covariant 4-vector

Notice also that
eikx = i2gαβkαkβ e

ikx

= 0 if and only if k is null: kαk
α = 0

It is impossible to argue so neatly in non-Cartesian coordinates.
• In Cartesian coordinates—uniquely—we gain direct access to the powerful

techniques of Fourier transform theory . . . for by superposition of the plane
waves just described we obtain

φ(x) = 1
(2π)2

∫∫∫∫
a(k)δ(kαk

α − 0)eikx dk0dk1dk2dk3

= Fourier transform of a(k)δ(kαk
α − 0)

• Last but most important: When we write (say) Fµν = 0 we have interest
not in independent µν-indexed solutions of the wave equation, but in
solutions so interrelated that they satisfy the ν-indexed side-conditions
∂µF

µν = 0 and ∂αεαρσνFρσ = 0. Similarly, when we write Aµ = 0 we
have interest not in independent µ-indexed solutions of the wave equation,
but in solutions so interrelated that they satisfy the side-condition
∂µA

µ = 0. Implications of the side conditions are far easier to work out
in Cartesian coordinates than in any other coordinate system.

So we yield uncomplainingly to “Cartesian tyranny,” and expect soon to see
concrete evidence of the advantages of doing so.

One further point merits preparatory comment. If solutions

φn(x) = ane
iknx

of the wave equation are required to satisfy linear side conditions∑
n

φn(x) = 0

then pretty clearly it is essential that k1 = k2 = . . .; i.e., that they buzz in
synchrony .
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Look now to these plane wave solutions

E1(x) = E1 · eik1x

E2(x) = E2 · eik2x

E3(x) = E3 · eik3x

B1(x) = B1 · eik4x

B2(x) = B2 · eik5x

B3(x) = B3 · eik6x

↑—constants

upon Maxwell’s equations (65) impose what amount to a set of eight linear side
conditions, which there is no hope of satisfying unless the components of EEE and
BBB “buzz in synchrony”:

k1α = k2α = k3α = k4α = k5α = k6α

So we adopt this sharpened hypothesis:

EEE(x) = EEE · eikx = EEE · exp
{
i(ωt− kkk···xxx)

}
BBB(x) = BBB · eikx = BBB · exp

{
i(ωt− kkk···xxx)

}
}

(393)

Maxwell’s equations (65) now become a set of conditions

kkk ···EEE = 0

kkk×BBB + ω
c EEE = 000

kkk ···BBB = 0

kkk×EEE − ωc BBB = 000

that serve to constrain the relationships amongEEE, BBB and the propagation vector
kkk . The 1st and 3rd conditions tell us that

EEE and BBB lie necessarily in the plane normal to kkk

Crossing kkk into the 2nd equation gives

ω
c kkk×EEE + kkk× (kkk×BBB)︸ ︷︷ ︸ = 000

= (kkk ···BBB)kkk − (kkk ···kkk)BBB = 000−
(ω
c

)2
BBB

which is redundant with the 4th equation. Dotting EEE into the 4th equation we
discover that

EEE and BBB are normal to each other
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Figure 92: Snapshot of a monochromatic electromagnetic plane
wave. Normal to all planes-of-constant-phase (two are shown) is
the “propagation or wave vector” kkk . The blue sinusoid represents
the EEE-vector. Normal to it (and of the same amplitude and phase)
is the green BBB-vector. In animation the electric/magnetic waves
would be seen to slide rigidly along kkk with phase speed c.

Finally, dot the 4th equation into itself to obtain(ω
c

)2
BBB···BBB = (kkk×EEE)···(kkk×EEE)︸ ︷︷ ︸

= (kkk ···kkk)(EEE ···EEE)− (kkk ···EEE)2 =
(ω
c

)2
EEE ···EEE − 0

EEE and BBB are of equal magnitude

It now follows that if kkk and EEE are given/known, then BBB can be computed from

BBB = k̂kk×EEE (394)

We saw already on page 264 that

phase = kkk ···xxx− ωt
is constant on planes ⊥ kkk that slide along with

phase speed ω/k = c
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so are led to the image of an electromagnetic plane wave shown in Figure 92.

The vector EEE can be inscribed in two linearly independent ways on the
phase plane. With that fact in mind . . .
• go to some arbitrary “inspection point,”
• face into the onrushing plane wave,
• inscribe an arbitrarily unit vector eee1 on the phase plane,
• construct eee2 ≡ k̂kk × eee1, a unit vector ⊥ eee1.

The “flying EEE -vector” can by these conventions be described

EEE(t) = E1eee1 + E2eee2 =
(
E1(t)
E2(t)

)
(395.1)

with
E1(t) = E1 cos(ωt+ δ1)
E2(t) = E2 cos(ωt+ δ2)

}
(395.2)

Equations (395) will provide the point of departure for the main work of this
chapter.

Suppose we had elected to work in the language of potential theory; i.e.,
from238

Aµ(x) = Aµ · eikx

↑
—constant 4-vector

where

Aµ(x) = 0 requires kµ to be null: kµkµ = 0
The Lorentz gauge condition ∂µAµ = 0 requires kµAµ = 0

Borrowing notation from pages 296 and 259

‖kµ‖ =
(
k0

kkk

)
with k0 ≡

√
kkk···kkk = ω/c

‖Aµ‖ =
(
ϕ
AAA

)

we find that
kµA

µ = 0 ⇐⇒ ϕ = k̂kk···AAA
so our potential plane wave can be described

Aµ(x) = Aµ· eikx with ‖Aµ‖ =
(
k̂kk···AAA
−AAA

)
238 See again page 268. We employ the “complex variable trick” to simplify
the writing: extract the real part to obtain the physics.
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This we use to obtain

E1 = F01 = ∂0A1 − ∂1A0 = i(k0A1 − k1A0) · eikx

E2 = F02 = ∂0A2 − ∂2A0 = i(k0A2 − k2A0) · eikx

E3 = F03 = ∂0A3 − ∂3A0 = i(k0A3 − k3A0) · eikx

B1 = F32 = ∂3A2 − ∂2A3 = i(k3A2 − k2A3) · eikx

B2 = F13 = ∂1A3 − ∂3A1 = i(k1A3 − k3A1) · eikx

B3 = F21 = ∂2A1 − ∂1A2 = i(k2A1 − k1A2) · eikx

whence

EEE = −(ω/c)
[
AAA− (k̂kk···AAA)k̂kk

]
· ieikx

= −(ω/c)AAA⊥· ieikx (396.1)

BBB = −(ω/c)
[
k̂kk ×AAA

]
· ieikx

= k̂kk ×EEE (396.2)

Notice that

• there are two linearly independent ways to inscribe AAA⊥ on the plane
normal to kkk

• AAA‖ makes no contribution to EEE or BBB, no contribution therefore to the
physics . . . so can be discarded, the reason being that

• AAA‖ can be very simply gauged away : take χ = eikx and notice that

∂µχ = ikµχ is parallel to kµ

Moreover
∂µ(∂µχ) = −(kµkµ)χ = 0 because kµ is null

so such a gauge transformation respects the Lorentz gauge condition.

The argument just completed has led us back again—but rather more swiftly/
luminously—to precisely the physical results obtained earlier by other means.

It is instructive to consider how electromagnetic plane wave physics would
be altered “if the photon had mass.” According to Proca,239 we would have
interest then the plane wave solutions

Aµ(x) = Aµ· eikx

of
( + κ

2 )Aµ = 0 and ∂µA
µ = 0

239 We borrow here from §5 in Chapter 4, but use Aµ rather than Uµ to denote
the “massive vector Proca field.”
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The first condition supplies kµkµ = κ
2 or k0 =

√
kkk···kkk + κ2, while the second

condition supplies A0 = (kkk···AAA)/k0. The argument that led to (396) now leads
to

EEE = −
[
k0AAA−A0kkk

]
· ieikx

= −k0
[
AAA− (kkk···AAA)kkk

k2
0

]
· ieikx

= −k0
[
AAA− ℘2(k̂kk···AAA)k̂kk

]
· ieikx (397.1)

BBB = −k
[
k̂kk ×AAA

]
· ieikx

= ℘ · (k̂kk ×EEE) (397.2)

where what I call the “Proca factor”

℘ ≡ k/k0 =

√
kkk···kkk√

kkk···kkk + κ2
with

{
k ≡

√
kkk···kkk

k0 = ω/c

↓
= 1 in the Maxwellian limit κ

2 ↓ 0

We distinguish two cases:

Case AAA ⊥ kkk This can happen in two ways. Because k̂kk···AAA = 0 we have

EEE = −(ω/c)AAA⊥· ieikx

BBB = ℘ · (k̂kk ×EEE)

which differs from (396) only in the presence of the ℘ -factor, which diminishes
the strength of the BBB -field.

Case AAA ‖ kkk Writing AAA = A‖k̂kk we have

EEE = −(ω/c)(1− ℘2)A‖k̂kk · ieikx

BBB = ℘ · (k̂kk ×EEE)

= 000 because EEE ‖ k̂kk

The electric field has acquired an oscillatory longitudinal component which
possesses no magnetic counterpart , and both longitudinal fields vanish in the
Maxwellian limit.

2. Stokes parameters. The “flying EEE -vector” of (395) traces/retraces the
simplest of Lissajous figures—an ellipse—on the (E1, E2)-plane. The flight
of EEE(t) is, at optical frequencies (ω ∼ 1015 Hz), much too brisk to be observed,
but the figure of the ellipse (size, shape, orientation) and the � / � sense
in which it is pursued are observable—detectable by the “slow” devices of
classical optics (eyes, photometers, filters of various types). They give rise
to the phenomenology of optical polarization, the theory of which will concern
us in this and the next few sections.
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E2

χ√
S0

eee2
α ψ

eee1 E1

EEE(t)

Figure 93: Ellipse traced by the EEE-vector of an electromagnetic
plane wave, with kkk up out of the page. It is a remarkable property
of ellipses that all circumscribing rectangles (two are shown) have
the same diagonal measure, which can be taken to set the size of
the ellipse. The angle ψ describes the orientation of the principal
rectangle, which is of long dimension 2a, short dimension 2b. The
shape of the ellipse is usually described in terms of the

ellipticity ≡
√

1− (b/a)2

but—as Stokes appreciated—is equally well described by

χ ≡ arctan(b/a)

Helicity information is absent from (398), but from (395.2) we
discover—look to d

dtEEE(t) at conveniently chosen points, or argue
that if E2(t) leads E1(t) (i.e., if δ2 > δ1) the circulation is clockwise,
and in the contrary case counterclockwise—that the circulation is �
or � according as 0 < δ ≡ δ2 − δ1 < π or −π < δ < 0.
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Eliminating t between equations (395.2) we obtain240

E2
2 · E2

1 − 2E1E2 cos δ · E1E2 + E2
1 · E2

2 = E2
1E

2
2 sin2 δ (398)

δ ≡ δ2 − δ1 ≡ phase difference

Equations (395.2) provide a parametric description, and (398) an implicit
description . . . of the ellipse241 shown in Figure 93. Some elementary analytical
geometry—the details are fun but uninformative, and (since they have nothing
specifically to do with electrodynamics) will be omitted—leads to the following
conclusions:

S0 = E2
1 + E2

2

sin 2χ = sin 2α · sin δ =
2E1E2 sin δ

E2
1 + E2

2

≡ S3

S0

tan 2ψ = tan 2α · cos δ =
2E1E2 cos δ

E2
1 − E2

2

≡ S2

S1

where S1 ≡ E2
1 − E2

2

Notice that helicity—which was observed above to be controlled by the sign
of δ—could as well be said (since E1 and E2 are non-negative) to be controlled
by the sign of χ, and that (as is clear from the figure) χ ranges on the restricted
interval

[
− π

2 ,+
π
2

]
. Recasting and extending the results summarized above, we

have
S0 = E2

1 + E2
2

S1 = E2
1 − E2

2 = S0 cos 2χ cos 2ψ
S2 = 2E1E2 cos δ = S0 cos 2χ sin 2ψ
S3 = 2E1E2 sin δ = S0 sin 2χ




(399)

These equations define the so-called Stokes parameters, which were introduced
by G. G. Stokes in  to facilitate the discussion of some experimental results.
There is reason to think that Stokes himself was unaware of the extraordinary
power of his creation . . .which took nearly a century, and the work of many
hands, to be revealed. Today his lovely idea is recognized to be central to
every classical/statistical/quantum account of the phenomenology of optical
polarization.

It is evident that
S2

1 + S2
2 + S2

3 = S2
0 (400)

and that rotational sense (helicity) can be read from the sign of S3.

240 problem 61.
241 problem 62.
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√
S0

χ

ψ

S3

S0

2χ S2

2ψS1

Figure 94: Equations (399) serve to associate points on the Stokes
sphere of radius S0 with centered ellipses of fixed size and all possible
figures & orientations. Points in the northern hemisphere (S3 > 0)
are assigned � helicity, points in the southern hemisphere are
assigned � helicity. In the case S0 = 1 the Stokes sphere becomes
the Poincaré sphere.
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Henri Poincaré () observed that, in view of the structure second stack
of equalities in (399), it is natural to place the polarizational states of
electromagnetic plane waves in one-one association with the points SSS that
comprise the surface of a sphere of radius S0 in 3-dimensional “Stokes space,”
as indicated in Figure 94. It becomes obvious from the figure that specification
of

{
S0, S1, S2, S3

}
is equivalent to specification of the intuitively more

immediate parameters
{
S0, ψ, χ

}
. We need kkk to describe the direction of

propagation and frequency/wavelength of the monochromatic plane wave, but
if we have only “slow detectors” to work with then

{
S0, S1, S2, S3

}
summarize

all that we can experimentally verify concerning the polarizational state of the
wave.242

Reading from Figure 94, we find the polarizational states which correspond
to (for example) the axial positions on the Poincaré sphere to be those
illustrated below:




1
+1

0
0







1
−1

0
0







1
0

+1
0







1
0
−1

0







1
0
0

+1







1
0
0
−1




It becomes in this light natural to say (with Stokes) of a pair of plane waves
that they are “oppositely polarized” if and only if their Stokes

SSS ≡


S1

S2

S3


 and SSS ≡


S1

S2

S3




vectors point in diametrically opposite directions:

SSS = −λ2SSS

of which
S0 = +λ2S0

242 It is because they relate so directly to the observational realities that Stokes
parameters become central to the quantum theory of photon spin. See §2–8 in
J. M. Jauch & F. Rohrlich, The Theory of Photons & Electrons () where,
by the way, I was first introduced to this pretty subject.
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is—by (400)—a corollary. From (399) we see that

SSS −→ SSS = −λ2SSS

can, in more physical terms, be described

E1 −→ E1 = +λE2

E2 −→ E2 = −λE1

δ −→ δ = δ

so the “oppositely polarized” associates of

EEE(t) = eee1E1 cosωt+ eee2E2 cos(ωt+ δ)

have the form

EEE(t) = eee1λE2 cos(ωt+ α)− eee2λE1 cos(ωt+ δ + α)

where λ and α are arbitrary. As is intuitively evident, as Fresnel (∼)
demonstrated experimentally,243 and as we will soon be in position to prove,
oppositely polarized plane waves to not interfere.

I propose now to make more secure the recent claim242 that Stokes
parameters pertain directly to the observational properties of plane waves.
Energy flux is described (see again page 216) by the

Poynting vector SSS(t) = c(EEE×BBB)

For a plane wave BBB = k̂kk×EEE

so = cE2(t)k̂kk

The magnitude of the Poynting vector is given therefore by

S(t) = cE2(t) = c
{
E2

1 cos2 ωt+ E2
2 cos2(ωt+ δ)

}
and the intensity of the wave (S(t) averaged over a period τ) by

I ≡ 1
τ

∫ τ
0

S(t) dt = 1
2c

{
E2

1 + E2
2

}
So

S0 ≡ E2
1 + E2

2 = 2
cI (401)

can be measured directly by a “J-meter,” i.e., by a photometer that has been
re-scaled so that it displays

J ≡ 2
c · (intensity)

243 Augustin Jean Fresnel (–) was an engineer who took up optics
while a political exile with time on his hands. It was his study of polarization
that led him to propose that light was to be understood in terms of transverse
waves, not the longitudinal waves postulated by Huygens, Young and others.
Practical problems of lighthouse design led him to the invention of the Fresnel
lens and to fundamental contributions to theoretical optics (diffraction).
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If an arbitrarily polarized wave

EEEin(t) = eee1E1 cosωt+ eee2E2 cos(ωt+ δ)

is incident upon a ←→ linear polarizer then the exit beam can be described

EEEout(t) = eee1E1 cosωt

so—arguing from (399)—we have

S0

S1

S2

S3



out

=




E2
1

E2
1

0
0


 =




1
2 (S0 + S1)
1
2 (S0 + S1)

0
0


 =




1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0






S0

S1

S2

S3



in

We are led thus to these descriptions of the action of some typical polarizers:

←→ polarizer :



S0

S1

S2

S3



out

=




1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0






S0

S1

S2

S3



in

(402.1)

� polarizer :



S0

S1

S2

S3



out

=




1
2 − 1

2 0 0
− 1

2
1
2 0 0

0 0 0 0
0 0 0 0






S0

S1

S2

S3



in

(402.2)

↗↙ polarizer :



S0

S1

S2

S3



out

=




1
2 0 1

2 0
0 0 0 0
1
2 0 1

2 0
0 0 0 0






S0

S1

S2

S3



in

(402.3)

↖↘ polarizer :



S0

S1

S2

S3



out

=




1
2 0 − 1

2 0
0 0 0 0

− 1
2 0 1

2 0
0 0 0 0






S0

S1

S2

S3



in

(402.4)

� polarizer :



S0

S1

S2

S3



out

=




1
2 0 0 1

2

0 0 0 0
0 0 0 0
1
2 0 0 1

2






S0

S1

S2

S3



in

(402.5)

� polarizer :



S0

S1

S2

S3



out

=




1
2 0 0 − 1

2

0 0 0 0
0 0 0 0

− 1
2 0 0 1

2






S0

S1

S2

S3



in

(402.6)

Arguing again from (399), we find that the action

EEEin(t) = eee1E1 cosωt+ eee2E2 cos(ωt+ δ)
↓

EEEout(t) = eee1e−αE1 cosωt+ eee2e−αE2 cos(ωt+ δ)
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of a neutral filter can be described

neutral filter :



S0

S1

S2

S3



out

= e−2α




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1






S0

S1

S2

S3



in

(402.7)

Suppose, now, that we present a plane wave serially to
0) a neutral filter F0 with e−2α = 1

2 ,
1) a ←→ polarizer F1,
2) a ↗↙ polarizer F2,
3) a � polarizer F3

and in each case use a J-meter to measure the intensity of the output, obtaining

[
S0

]
out

=




J0 = 1
2S0 when F0 used

J1 = 1
2 (S0 + S1) when F1 used

J2 = 1
2 (S0 + S2) when F2 used

J3 = 1
2 (S0 + S3) when F3 used

Algebraically deconvolving the output data, we obtain

S0 = 2J0

S1 = 2J1 − 2J0

S2 = 2J2 − 2J0

S3 = 2J3 − 2J0


 (403)

Alternative sets of filters would serve as well, but would require some algebraic
adjustment at (403). The implication is that

With four suitably selected filters and a photometer
one can measure Stokes’ parameters, and thus fully
characterize the intensity/polarization/helicity of a
(coherent monochromatic) plane wave.

3. Mueller calculus. A light beam—modeled, for the moment, as a plane wave—
with attributes {

kkk, S0, S1, S2, S3

}
in

is presented to a passive device, from which a beam with attributes{
kkk, S0, S1, S2, S3

}
out

emerges. A description of how the output variables depend upon the input
variables would comprise a characterization of the device. In view of the fact
that
• mirrors/lenses typically change the direction of the beam, and scatterers

typically spray a beam in multiple directions
• some crystals change the frequency of a monochromatic beam
• some materials/devices alter the coherence properties of an incident beam,

others alter the degree of polarization (of which more later)
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we recognize that some physical restriction is involved when agree to limit our
concern to devices that conform to the following scheme:


S0

S1

S2

S3



in

−−−→ device −−−→



S0

S1

S2

S3



out

Since (400) pertains generally to monochromatic plane waves, we see that
for every such device[

S2
0 − S2

1 − S2
2 − S2

3

]
out

=
[
S2

0 − S2
1 − S2

2 − S2
3

]
in

= 0 (403.1)

while for every passive device (since passive devices are—unlike lasers—not
connected to an external energy source, and therefore may absorb energy from,
but cannot inject energy into. . . the transmitted light beam) energy conservation
requires

0 �
[
S0

]
out

�
[
S0

]
in

(403.2)

A general theory of passive devices would result from an effort to describe the
functional relationships

Sµout = Dµ(S0in, S1in, S2in, S3in) : µ = 0, 1, 2, 3

permitted by (403). Remarkably, such an effort, if based upon (403.1) alone,
would lead back again to the conformal group, which was encountered earlier
in quite another connection.244 When (403.2) is brought into play certain
group elements are excluded: one is left with what might be called the “device
semigroup.”245

A far simpler theory—which is, however, adequate to most practical needs
—is obtained if one imposes the additional assumption that the parameters
Sµout are linear functions of Sµ in:



S0

S1

S2

S3



in

−−−→ linear passive device −−−→



S0

S1

S2

S3



out

= M



S0

S1

S2

S3



in

One is led then to the linear fragment of the conformal group; i.e., to the
condition (compare (185.2) on pages 129 & 164)

M
T j
���g M = m2 j

���g (404.1)

subject to the proviso that one must exclude cases that place one in violation
of (403.2). Evidently det M = m4, so in non-singular cases one can state that
M/m is Lorentzian:

M (if non-singular) possesses the structure M = m · /\\\ (404.2)

244 See again Chapter 2, §6. For a brief sketch of the resulting theory of optical
devices see pages 353–354 in classical electrodynamics ().
245 A semigroup is a “group without inversion.”
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remark: One must carefully resist any temptation to conclude
from the design of (404) that the Stokes parameters Sµ transform
as the components of a 4-vector. Their Lorentz transformation
properties are inherited—via the definitions (399)—from those
of the electromagnetic field, and are in fact quite intricate. The
subject is treated on pages 436 et seq in my electrodynamics
().

The idea of using 4×4 matrices to describe the action of linear passive optical
devices was first developed in a report by Hans Mueller . . .which, however, he
never published. Such matrices are called “Mueller matrices,” and their use
(discussed below) is the subject matter of the “Mueller calculus.”

The 4×4 matrices encountered in (402.1–6) are readily shown to satisfy

M
T j
���g M = O, which is (404.1) with m = 0 (405)

and to be always in compliance with (403.2).246 So each is a Mueller matrix.
Each is found, moreover, to possess247 the “projection property”248

M
2 = M (406)

Calculation shows, moreover, that in each case

det(M− λI) = λ3(λ− 1) (407)

so

MSin = 0 has three linearly independent solutions;
the device extinguishes such beams

MSin = Sin has but one; the device is transparent to
such beams (scalar multiples of one another)

example : Noting that 32 + 42 + 122 = 132 let us, by contrivance, take

Sin =




13
3
4
12




and let us take M to be the Mueller matrix of (402.1) that describes the action
of a ←→ polarizer. Then (by quick calculation)

246 problem 63.
247 problem 64.
248 From (406) it follows, by the way, that (det M)2 = det M whence

det M =
{ 1 if M is the trivial projector I

0 otherwise

The zero on the right side of (405) can be therefore be looked upon as a forced
consequence of projectivity.
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Sout = MSin =




8
8
0
0


, projected component of




13
3
4
12




The exit beam is 100% ←→ polarized, but dimmer:

S0out = 8 < S0in = 13

A second pass through the device (second such projection) has no effect (that
being the upshot of M

2 = M):

M




8
8
0
0


 =




8
8
0
0




To describe the action of an arbitrary polarizer : let σσσ be an arbitrary unit
3-vector and construct

M(σσσ) ≡ 1
2 ·




1 σ1 σ2 σ3

σ1 σ1σ1 σ1σ2 σ1σ3

σ2 σ2σ1 σ2σ2 σ2σ3

σ3 σ3σ1 σ3σ2 σ3σ3


 (408.1)

One can show249 that M(σσσ) satisfies (405/6/7) and that

M(σσσ)




1
σ1

σ2

σ3


 =




1
σ1

σ2

σ3


 (408.2)

Moreover
M(−σσσ)M(+σσσ) = O : all σσσ (409)

which supplies neat support for Stokes’ claim (page 305) that diametrically
opposite points on the Stokes sphere refer to “opposite polarizations,” and
conforms precisely to the pattern evident when one compares (402.2) with
(402.1), (402.4) with (402.3), (402.6) with (402.5). In the case

σσσ =


 1

0
0




Equation (409) might be notated

M(↑↓)M(←→) = O

249 problem 65.
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and interpreted to express the familiar fact that no light passes through crossed
polarizers.

Suppose, however, we were to interpose (between M(↑↓) and M(←→)) a third
device: let it be (say) the linear polarizer represented (see again Figure 94) by

M(ψ) ≡M(σσσ) with σσσ =


 cos 2ψ

sin 2ψ
0




With the assistance of Mathematica we compute

M(↑↓)M(ψ)M(←→) =




1
8 sin2 2ψ 1

8 sin2 2ψ 0 0
− 1

8 sin2 2ψ − 1
8 sin2 2ψ 0 0

0 0 0 0
0 0 0 0


 
= O

which illustrates the basis of an experimental technique standard to microscopy
and engineering: one places a microscope slide or the stressed Lucite model of a
machine part between crossed polarizers, and examines the transmitted image.

The preceding calculation also illustrates the central idea of the “Mueller
calculus”: To determine the net effect of cascaded optical devices one simply
multiplies the corresponding Mueller matrices.

“Optical devices” exist in considerable variety. At (402.7) we encountered
the Mueller matrices

M = e−2α · I (410)

that describe the action of “neutral filters.” Such a device is transparent
at α = 0, and becomes progressively more absorptive (optically dense) as α
increases.

Mueller matrices of major practical importance arise if at (404.2) we set
m = 1 and assume M = /\\\ to have (see again (208) on page 155) the rotational
design

M =




1 0 0 0
0
0 R

0


 (411)

R ≡ exp


2θ


 0 −σ3 σ2

σ3 0 −σ1

−σ2 σ1 0





 : a rotation matrix

Such an M leaves S0 invariant (no absorption) but causes

SSS ≡


S1

S2

S3
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Figure 95: The input beam in Stokes state ◦ is passes through three
successive devices of type (411) to produce an output beam in Stokes
state •. Dots mark the centers of rotation (ends of the σσσ vectors).
Because rotations possess the group property, the net effect of the
three rotational beam transformations could have been achieved by
a single such transformation.

to experience righthanded (�) rotation through the angle 2θ about the axis
defined by the unit vector σσσ. In the special case

σσσ =


 0

0
1




(411) gives

M =




1 0 0 0
0 cos 2θ − sin 2θ 0
0 sin 2θ cos 2θ 0
0 0 0 1




the action of which (see again Figure 94) is to rotate the plane of polarization:

ψ → ψ + θ

Such devices exploit the optical activity phenomenon, and are called “rotators.”
The case

σσσ =


 1

0
0
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gives

M =




1 0 0 0
0 1 0 0
0 0 cos 2θ − sin 2θ
0 0 sin 2θ cos 2θ




which achieves
δ → δ + 2θ

Such devices are called “compensators” or “phase shifters.” It is clear that
Mueller matrices of type (411) are non-singular: M

–1 is again a Mueller matrix,
which means that the action of such a device could be undone by a suitably
chosen second such device. Projection, on the other hand, is a non-invertible
operation: the action of a polarizer, when undone by subsequent polarizers,
always entails attenuation of the beam. To illustrate the point, we return to
the example of page 312 and by computation find that

M(←→)M(ψ)M(←→) = 1
2 cos4 ψ ·M(←→)

Looking back again to (404.2), it becomes natural in view of the foregoing
to assign /\\\ the “boost” design of (209), writing

M = m·




γ β1γ β2γ β3γ
β1γ 1+(γ−1)β1β1/β

2 (γ−1)β1β2/β
2 (γ−1)β1β3/β

2

β2γ (γ−1)β2β1/β
2 1+(γ−1)β2β2/β

2 (γ−1)β2β3/β
2

β3γ (γ−1)β3β1/β
2 (γ−1)β3β2/β

2 1+(γ−1)β3β3/β
2




where the β ’s are “device parameters” that have now nothing to do with velocity .
Immediately

S0out = mγ(S0in + βββ ···SSSin)

SSSin = S0in ŜSSin by (400)

= mγ(1 + βββ ··· ŜSSin)S0in

= mγ(1 + β cosω)S0in : ω is the angle between βββ and SSSin

so to achieve universal compliance with the passivity condition (403.2) we must
have

0 < m �
√

1−β
1+β � 1

where it is understood that 0 � β < 1. It is not at all difficult to show of such
Mueller matrices that though M

–1 exists—and is, in fact, easy to describe

[m/\\\(βββ)]–1 = m–1/\\\(−βββ)

—it stands in violation of the passivity condition, so cannot be realized by
a passive device. On pages 361/2 of some notes already cited244 I explore
some of the finer details of this subject, and argue that it should be possible
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to mimic 4-dimensional relativity (composition of non-colinear boosts, Thomas
precession, etc.) by experiments performed on a linear optical bench!

In some respects more elegantly efficient—but in other physical respects
more limited—than the Mueller calculus is the “Jones calculus,” devised by
R. Clark Jones one summer in the early ’s while he was employed in the
laboratory of Edwin Land as a Harvard undergraduate. In Jones’ formalism
Stokes’ parameters are folded into the design of a complex 2-vector, and devices
are represented by complex 2×2 matrices. The formalism is developed in
elaborate detail in my “Ellipsometry” () and in the literature cited there,
but it would take us too far afield to attempt to treat the subject here.

4. Partially polarized plane waves. The “plane waves” considered thus far are
highly idealized abstractions: they
• are of infinite temporal duration
• are of infinite spatial extent . . . and therefore
• carry infinite energy and momentum, and moreover
• are spatially/temporally perfectly coherent.

But so also—and in much the same way—is the Euclidean plane an idealized
abstraction. Euclidean geometry becomes relevant to physical geometry only
in contexts (very numerous indeed!) in which it is sensible to conflate the local
geometry of the curved surface with the local geometry of the tangent plane. So
it is in classical electrodynamics: ideas borrowed from the idealized physics of
plane waves become relevant to the physics of realistic radiation fields only as
local approximants,250 and can be expected to lose their utility “in the large,”
as also in the vicinity of charges, caustics, “kinks” in the field.

But radiation fields the gross properties of which display any degree of
spatial/temporal variability cannot be precisely monochromatic. We expect
natural fields to acquire also some degree of spatial/temporal incoherence from
the radiation production mechanism, whatever it might be. We are led thus
to the concept of a quasi-monochromatic plane wave—led, that is, to the
replacement

EEE(t) =
{
eee1E1e

iδ1 + eee2E2e
iδ2

}
eiωt (395)

↓
EEE(t) =

{
eee1E1(t)eiδ1(t) + eee2E2(t)eiδ2(t)

}
eiωt (412)

where ω sets the nominal frequency and E1(t), E2(t), δ1(t) and δ2(t) are assumed
to change
• slowly with respect to eiωt but (in typical cases)
• rapidly with respect to the response time of our photometers.

250 Beware! Plane waves are, in one critical respect, not representative of the
typical local facts. I refer to the circumstance that, while EEE ⊥ BBB is charac-
teristic of plane waves, it is not a property of fields in general (superimposed
plane waves). See below, page 332.



316 Light in vacuum

Figure 96: Imperfectly elliptical flight (compare Figure 93) of the
EEE-vector when the plane wave is only quasi-monochromatic.

Notice that we make no attempt to tinker with the spatial properties of the wave
(our photometer looks, after all, to only a local sample of the physical wave),
and that the procedure we have adopted is frankly “phenomenological” in the
sense that we do not ask how E1(t), E2(t), δ1(t) and δ2(t) might be constrained
by Maxwell’s equations.

From (412) we conclude that, as illustrated above, EEE(t) traces an ellipse
only in the shortrun—an ellipse with “instantaneous” Stokes parameters given
(see again (399)) by

S0(t) = E2
1(t) + E2

2(t)

S1(t) = E2
1(t)− E2

2(t)
S2(t) = 2E1(t)E2(t) cos δ(t)
S3(t) = 2E1(t)E2(t) sin δ(t)




(413)

δ(t) ≡ δ2(t)− δ1(t)
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The ellipse jiggles about, constantly changing is figure/orientation, in a manner
determined by the (let us say steady) statistical properties of the wave. The
functions E1(t),E2(t) and δ(t)—whence also S0(t), S1(t), S2(t) and S3(t)—have,
in other words, assumed the character of random variables. Our filters and
(slow) J-meters, used as described on page 308, supply information not about
the functions Sµ(t) but about their mean values:

Sµ ≡ 〈Sµ(t)〉 ≡ 1
T

∫ T

0

Sµ(t) dt :

{
T might refer to the response
time of the instrument

Proceeding in this light from (403) and (413) we have

S0 = 2J0 = 〈E2
1〉+ 〈E2

2〉
S1 = 2J1 − 2J0 = 〈E2

1〉 − 〈E2
2〉

S2 = 2J2 − 2J0 = 2〈E1E2 cos δ〉
S3 = 2J3 − 2J0 = 2〈E1E2 sin δ〉




(414)

Evidence that Stokes’ parameters are, if not by initial intent, nevertheless
wonderfully well-adapted to discussion of the dominant statistical properties of
physical lightbeams emerges from the following little argument: working from
(414) we have

S2
0 = 〈E2

1〉2 + 2〈E2
1〉〈E2

2〉+ 〈E2
2〉2 (415.1)

S2
1 + S2

2 + S2
3 = 〈E2

1〉2 − 2〈E2
1〉〈E2

2〉+ 〈E2
2〉2 + 〈2E1E2 cos δ〉2 + 〈2E1E2 sin δ〉2

= S2
0 + 4

{
〈E1E2 cos δ〉2 + 〈E1E2 sin δ〉2 − 〈E2

1〉〈E2
2〉

}
(415.2)

But if x and y are any random variables (however distributed) then from
〈(λx + y)2〉 = λ2〈x〉2 + 2λ〈xy〉 + 〈y〉2 � 0 (all λ) it follows that in all cases
〈xy〉2 � 〈x2〉〈y2〉, so we have

〈E1E2 cos δ〉2 � 〈E2
1〉〈E2

2 cos2 δ〉
〈E1E2 sin δ〉2 � 〈E2

1〉〈E2
2 sin2 δ〉

giving

S2
1 + S2

2 + S2
3 ≤ S2

0 + 4
{
〈E2

1〉〈E2(cos2 δ + sin2 δ)2〉 − 〈E2
1〉〈E2

2〉
}︸ ︷︷ ︸

0

We are led thus to the important inequality

S2
0 − S2

1 − S2
2 − S2

3 � 0 (416)
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with—according to (400)—equality if (but not only if!) the beam is literally
monochromatic. Looking back again to Figure 94, we see that (416) serves to
place the vector

SSS ≡


 S1

S2

S3




inside the Stokes sphere of radius S0, and that SSS reaches all the way to the
surface of the Stokes sphere if and only if the beam is, in a fairly evident sense,
statistically equivalent to a monochromatic beam.

If E1, E2 and δ are statistically independent random variables then we can
in place of (414) write

S0 = 〈E2
1〉+ 〈E2

2〉
S1 = 〈E2

1〉 − 〈E2
2〉

S2 = 2〈E1〉〈E2〉〈cos δ〉
S3 = 2〈E1〉〈E2〉〈sin δ〉

If, moreover, all δ -values are equally likely, then 〈cos δ〉 = 〈sin δ〉 = 0, and we
have S2 = S3 = 0. If, moreover, 〈E1〉 = 〈E2〉 then S1 = 0. The resulting beam




1
0
0
0


 is said to be unpolarized : SSS = 000

It becomes on this basis natural to introduce the

“degree of polarization” P ≡

√
S2

1 + S2
2 + S2

3

S0
: 0 � P � 1 (417)

and to write


S0

S1

S2

S3


 =



PS0

S1

S2

S3


 +




(1− P )S0

0
0
0




= 100% polarized component + unpolarized component

When an unpolarized beam is presented to (for example) the linear polarizer of
(402.1) one obtains




S0

S1

S2

S3



in

−−−−−−−−−−−−−−−−→
linear polarizer at 0◦




S0

S1

S2

S3



out

=




1
2

1
2 0 0

1
2

1
2 0 0

0 0 0 0
0 0 0 0







S0

0
0
0



in

=




1
2S0
1
2S0

0
0
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Here
Pin = 0 : the entry beam is unpolarized, but
Pout = 1 : the exit beam is 100% polarized

And when the exit beam is presented to a second linear polarizer, described by
the M(ψ) of page 312, one obtains251 the “Law of Malus”:

output intensity
input intensity

= 1
4 (1 + cos 2ψ) = 1

2 cos2 ψ

A quasi-monochromatic beam is said to be

unpolarized
partially polarized

completely polarized


 according as




0 = P

0 < P < 1
P = 1

An unpolarized beam necessarily is polarized in the shortrun, but in the longer
term the EEE -vector traces an orientation-free scribble. Partial polarization
results when the scribble is somewhat oriented (fuzzy): this requires that E1(t),
E2(t), δ1(t) and δ2(t) more somewhat in concert; i.e., that they be statistically
correlated . It is important to note that the numbers Sµ provide a very
incomplete description of the beam statistics, and that even complete knowledge
of the statistical properties of the beam would leave the actual t -dependence of
EEE indeterminate. Many beams are—even in the case of complete polarization—
consistent with any prescribed/measured set of Sµ-values.

We are by those remarks into position to appreciate the import of Stokes’

Principle of Optical Equivalence: Lightbeams with identical
Stokes parameters are “equivalent” in the sense that they
interact identically with devices which detect or alter the
intensity and/or polarizational state of the incident beam.

and the depth of his insight into the physics of light. But one does not say
of objects that they are, in designated respects, “equivalent” unless there exist
other respects—whether overt or covert—in which they are at the same time
inequivalent; implicit in the formulation of Stokes’ principle is an assertion
that physical light beams possess properties beyond those to which the Stokes
parameters allude, properties to which photometer-like devices are insensitive.
There are many ways to render a page gray with featureless squiggles, many
ways to assemble an unpolarized light beam. What such beams, such statistical
assemblages share is, according to (414), not “identity” but only the property
that a certain quartet of numbers arising from their low-order moments and
correlation coefficients are equi-valued.

251 problem 66. Étiènne Louis Malus (–) was a French engineer/
physicist.
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We have, in effect, been alerted by Stokes to the existence of a “statistical
optics”—to the possibility that instruments (more subtle in their action than
photometers) might be devised which are sensitive to higher moments of an
incident optical beam. And we have been alerted to the possible existence
and potential usefulness of an ascending hierarchy of “higher order analogs” of
the parameters that bear Stokes’ name, formal devices that serve to capture
successively more refined statistical properties of optical beams. Examination
of the literature252 shows all those expectations to be borne out by fairly recent
developments. It becomes interesting in the light of these remarks to recall
the title of the paper in which the Stokes parameters were first described:
“On the composition and resolution of streams of polarized light from different
sources” (Trans. Camb. Phil. Soc. 9, 399 (1852)). Stokes brought the theory
of physical light beams to a state somewhat analogous to that encountered
in thermodynamics, where a few operationally defined variables mask a rich
time-dependent microphysics, yet serve to support a formalism which is—
surprisingly—closed/self-consistent/complete . . . and which accounts accurately
for the phenomenological facts.

Already on page 318 we began to accumulate evidence that the Mueller
calculus is as “robust” as the Stokes formalism upon which it is based. To our
former population of Mueller matrices M it might now seem appropriate to add
(for example)

M ≡




1 0 0 0
0 e−u 0 0
0 0 e−u 0
0 0 0 e−u


 : u � 0 (418)

which evidently describes the action of an isotropic depolarizer , where the
adjective refers to isotropy not in physical space but in Stokes space. The
interesting point—which stands as an open invitation to formal/physical
invention—is that the M described above does not satisfy the fundamental
Mueller condition (404.1). Relatedly: I am informed by Morgan Mitchell, my
optical colleague, that while active “polarization scramblers” do exist, a “passive
depolarization device” would be a “tall order.” 253, 254

5. Optical beams. Listed at the beginning are several respects in which “plane
waves are highly idealized abstractions.” With the introduction of the notion
of “quasi-monochromaticity” we were able to introduce an element of realism
into the discussion, but
• infinite temporal duration
• infinite spatial extent
• infinite energy/momentum

252 See, for example, E. L. O’Neill, Introduction to Statistical Optics ();
J. W. Simmons & M. J. Guttmann, States, Waves and Photons: A Modern
Introduction to Light (); C. Brosseau,Fundamentals of Polarized Light: A
Statistical Optics Approach ().
253 problem 67.
254 problem 68.
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Figure 97: Representation of the function ϕ(t, x, 0, z) described at
(419) below. The Gaussian wavepacket glides rigidly, as indicated
by the arrow. It is temporally confined, but spatially unconfined.

are unphysical abstractions that survived untouched in the ensuing discussion
of beam statistics and imperfect polarization. Temporal confinement is fairly
easy to achieve, as the following remark makes clear:

Write ei(kct+0x+0y−kz) to describe a plane wave running up the z-axis.
Write

ϕ(t, x, y, z) =
∫ +∞

−∞
f(k)eik(c t−z) dk

=
∫ +∞

−∞
g(ω)eiω( t−z/c) dω

to describe a weighted superposition of such waves. Take g(ω) to have, in
particular, the form of a normalized Gaussian centered at Ω:

g(ω) ≡ 1√
2π
Te−

1
2 T 2(ω−Ω)2 : T > 0 has the physical dimension of time

↓
= δ(ω − Ω) as T ↑ ∞

Then

ϕ(t, x, y, z) =
∫ +∞

−∞
1√
2π
Te−

1
2 T 2(ω−Ω)2eiω( t−z/c) dω

= e−
1
2 T −2(t−z/c)2 · eiΩ(t−z/c) (419)

↓
= eiΩ(t−z/c) as T ↑ ∞

The physical (i.e., the real) part of the expression on the right side of (419) is
plotted in Figure 97.
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I have occasionally allowed myself to speak informally of “beams” when
the objects to which I referred were actually plane waves. We confront now the
mathematical force of the distinction. While the waves sampled by astronomers
are good approximations to plane waves, when we go into the laboratory to
perform optical experiments we deal most commonly with laterally confined
light beams.255 The mathematical description of lateral confinement poses
a number of delicate problems entirely absent from the theory of temporal
confinement. The subject acquired new urgency from the invention of the laser,
and it is from a classic contribution to that literature256 that I have adapted
the following remarks:

Setting aside, for the moment, the fact that electromagnetic radiation is
properly described by a transverse vector field, we look for laterally confined
monochromatic solutions ϕ(t, x, y, z) = eiωt · φ(x, y, z) of the scalar wave
equation ϕ = 0. Which is to say (see again page 294): we look for laterally
confined solutions of the Helmholtz equation{

( ∂
∂x )2 + ( ∂

∂y )2 + ( ∂
∂z )2 + k2

}
φ(x, y, z) = 0

We have interest in laterally confined waves propagating in the z-direction, so
look for solutions of the form

φ(x, y, z) = e−ikz · ψ(x, y, z) : k = ω/c

Which is to say: we look for laterally confined solutions of{
( ∂

∂x )2 + ( ∂
∂y )2 + ( ∂

∂z )2
}
ψ(x, y, z) = 2ik ∂

∂zψ(x, y, z)

We agree to work in the approximation that ψ(x, y, z) changes so gradually in
the z-direction that the red ( ∂

∂z )2-term can be dropped. We arrive then at an
equation

1
2k

{
( ∂

∂x )2 + ( ∂
∂y )2

}
ψ(x, y, z) = i ∂

∂zψ(x, y, z) (420)

which is structurally reminiscent of the Schrödinger equation for a particle free
to move in two dimensions:

�

2m

{
( ∂

∂x )2 + ( ∂
∂y )2

}
ψ(x, y, t) = −i ∂

∂ tψ(x, y, t)

Both equations have unlimitedly many solutions, depending
• in quantum mechanics upon the form assigned to ψ(x, y, t) at an initial

time t0, commonly taken to be t0 = 0

255 We do not speak of “star beams,” and it is only for local meteorological
reasons that we speak sometimes of “sun beams.”
256 H. Kogelnik & T. Li, “Laser beams and resonators,” Applied Optics 5,
1550 (1966). See also §4.5 in O. Svelto, Principles of Lasers (3rd edition ).
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• in beam theory upon the form assigned to ψ(x, y, z) at some prescribed
axial point z0; we will find it convenient to take z0 = 0.

To illustrate the point, the authors of quantum texts257 often take ψ(x, y, t0)
to be Gaussian

ψ(x, y, 0) = Ae−a(x2+y2)

and by one or another of the available computational techniques obtain

ψ(x, y, 0) −−−−→
t

ψ(x, y, t) = A 1
1+i(t/T ) exp

{
− a(x2+y2)

1+i(t/T )

}
: T ≡ m/2a�

which they use to demonstrate the characteristic temporal diffusion of initially
localized quantum states. Exactly the same mathematics lies at the base of the
“theory of Gaussiam beams.” Suppose it to be the case that

ψ(x, y, z) = Be−a(x2+y2) at z = 0

The exact solution of (420) is given then at other axial points z by258

ψ(x, y, z) = B 1
1−iz/Z e

−a(x2+y2)/(1−iz/Z) : Z ≡ k/2a

= B 1
1+(z/Z)2 [1 + i(z/Z)] exp

{
−ar2 1

1+(z/Z)2 [1 + i(z/Z)]
}

[1 + i(z/Z)] =
√

1 + (z/Z)2 eiΦ with Φ ≡ arctan(z/Z)

= B√
1+(z/Z)2

exp
{
−ar2 1

1+(z/Z)2

}
exp

{
i
[
Φ(z)− ar2 z/Z

1+(z/Z)2

]}
r2 ≡ x2 + y2

We are brought thus to a beam of the design

ϕ(t, x, y, z) ∼ 1
ρ(z) exp

{
−

[
r

ρ(z)

]2}·ei
[
ωt−kz+Φ(z)−(r/ρ)2(z/Z)

]
(421)

where

ρ(z) ≡
√

1 + (z/Z)2

a
describes the “spot radius” at z

Evidently

ρmin ≡ ρ0 = ρ(0) =
√

1/a : called the “beam waist”

and at this point the a-notation—a relic of Griffiths’ discussion of another
subject—has outworn its usefulness: we agree henceforth to write 1/ρ2

0 in place
of a. In this new notation we have

ρ(z) = ρ0

√
1 + (z/Z)2 i.e., (ρ/ρ0)2 − (z/Z)2 = 1 (422)

257 See, for example, David Griffiths, Introduction to Quantum Mechanics
(), page 50: Problem 2.22.
258 problem 69.
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Figure 98: Graph of the function ρ(z) = ρ0

√
1 + (z/Z)2 that lends

the Gaussian beam its hyperbolic profile. The asymptotes are shown
in red. The blue box is of length L. Its ends are positioned at
z = ±Z, where the spot radius has grown from ρ0 to

√
2ρ0. The

figure was drawn with Z/ρ0 = 10, and is in that respect misleading:
in realistic cases Z/ρ0 ∼ 104 and the angle between the asymptotes
(beam divergence) is much(!) reduced .

Figure 99: Graph of the factor that, according to (421), controls
the amplitude of a Gaussian beam. The values assigned to ρ0 and Z
are the same as those in the preceding figure, and are unrealistic in
the sense already explained. The running-wave modulation would
be much too finely detailed to be displayed at the same scale.
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which shows that the growth of the spot radius is hyperbolic (see Figure 98 &
Figure 99), with asymptotes

ρasymptotic = ±(ρ0/Z)z

the slopes of which are typically very shallow: from the definition

Z ≡ 1
2L ≡ kρ2

0/2 = πρ2
0/λ

we have
beam waist = 0.3989

√
Lλ

beam divergence = 0.7978
√
λ/L

}
(423)

where the numerics arise from
√

1/2π and
√

2/π respectively. In a typical case
L ∼ 1 meter and λ ∼ 7.0×10−7 meter, giving

beam waist = 0.33 mm

beam divergence = 6.67×10−4 (dimensionless)

Such a beam must travel about 15 meters for the spot radius to grow to 1 cm.

Looking back again to (421), we set r = 0 and find that the

axial phase at z = ωt− kz + arctan(z/Z)

Arguing from d
dt (axial phase at z) = 0 we compute

phase velocity at z =
[
k − Z

Z2+z2

]–1 · ω
=

[
1− Zλ

2π(Z2+z2)

]–1 · c by Z/k = Zλ/2π = 1
2ρ

2
0

=
{

1 + λ
2πZ +

(
λ

2πZ

)2 + · · ·
}
·c � c at z = 0

↓
= c as z →∞

—the interesting point being that as z becomes large the axial phase velocity
approaches c from above. Looking next to the geometry of the near-axial
equiphase surfaces, we study

kz − arctan(z/Z) +
r2

ρ2
0[1 + (z/Z)2]

(z/Z) = kz0 − arctan(z0/Z) (424)

where z0 marks the point at which the surface in question intersects the z-axis.
Taking both r2 and z0 − z to be small and asking Mathematica to develop the
arctan as a power series in (z − z0), we obtain

r2

ρ2
0[1 + (z0/Z)2]

(z0/Z) =
{
k − 1

Z[1 + (z0/Z)2]

}
(z0 − z) + · · · (425)

Define R in such a way that

k
2R
≡ 1

ρ2
0[1 + (z0/Z)2]

(z0/Z)

which is to say: let R ≡ z[1 + (Z/z)2], so that the expression on the left side of



326 Light in vacuum

Figure 100: Equiphase contours, taken from the expression on the
left side of (424).

(425) can be written kr2/2R. Next, notice that

1
Z[1 + (z0/Z)2]

<
1
Z

= 2
L
� π

2
λ

= k

so the second term in braces can be abandoned, giving (see Figure 100)

z0 − z = (1/2R)(x2 + y2) :
{

parabola-of-revolution, opening
to the left, with apex at z0

(425)

That
R = radius of curvature at the apex

follows from the observations (i) that

[z − (z0 −R)]2 + x2 + y2 = R2 (426)

describes a sphere of radius R that is centered on the z-axis and intersects that
axis at z = z0 and z = z0 − 2R, and (ii) that expansion of (426) gives back
(425) if a small (z0 − z)2-term is abandoned. This information might be used
to design the concave mirrors placed at the ends of a “Gaussian laser.”

The Gaussian beam discussed above can be used as the “seed” from which
to grow an infinite population of “Gaussian beams of higher order.” These (at
least those of lower order) are of physical importance when taken individually,
and collectively enable one (by weighted superposition) to fabricate beams of
unlimited variety. The generative idea is quite elementary

If ϕ is a solution of ϕ = 0 and if D is a differential
operator that commutes with

D = D

then so also is Dϕ a solution.

but must be adapted to the approximation scheme that was seen on page 322
to lie at the base of Gaussian beam theory: we write

ϕ(t, x, y, z) = ei(ω t−kx) · ψ(x, y, z)
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and require that ψ be an exact solution of the “Schrödinger equation”259{
( ∂

∂x )2 + ( ∂
∂y )2

}
ψ(x, y, z) = i(4Z/ρ2

0)
∂
∂zψ(x, y, z) (427)

Taking from page 323 the demonstrably exact solution

ψ00 = ρ0
1

ρ0[1 − iz/Z]
exp

{
− x2 + y2

ρ2
0[1 − iz/Z]

}

—which by ρ0[1− iz/Z] = ρ0

√
1 + (z/Z)2 e−i arctan(z/Z) ≡ ρ(z)e−iΦ(z) can also

be written

= ρ0
1

ρ(z)
eiΦ(z) · exp

{
−

[ x

σ(z)

]2

−
[ y

σ(z)

]2
}

σ(z) ≡
√
ρ0ρ(z) e−i 1

2 Φ

= ρ0
1
ρe

iΦ · e−ξ2−η2
: ξ ≡ x/σ and η ≡ y/σ

—as our “seed,” we harvest this fairly natural fruit:

ψmn ≡
(
−ρ0

∂
∂x

)m(
−ρ0

∂
∂y

)n
ψ00

= ρ0
1
ρe

iΦ
(
−ρ0

1
σ

∂
∂ξ

)m(
−ρ0

1
σ

∂
∂η

)n
e−ξ2−η2

= ρ0
1
ρe

iΦ
(
ρ0

1
σ

)m+n(
− ∂

∂ξ

)m(
− ∂

∂η

)n
e−ξ2−η2

=
(
ρ0

1
ρ

)
1+ 1

2 (m+n) ei[1+ 1
2 (m+n)]ΦHm(ξ)Hn(η) · e−ξ2−η2

(428)

In the final line we have recalled260 Rodrigues’ construction

Hm(ξ) = eξ2(− ∂
∂ξ

)m
e−ξ2

of the Hermite polynomials:

H0(ξ) = 1
H1(ξ) = 2ξ
H2(ξ) = 4ξ2 − 2
H3(ξ) = 8ξ3 − 12ξ
H4(ξ) = 16ξ4 − 48ξ2 + 12

...

That the functions ψmn constructed in this way do in fact exactly satisfy (427)
can be demonstrated (for small m, n) by Mathematica -assisted calculation, but
that they must do so follows transparently from the observation that

∂
∂x and ∂

∂y commute with
{

( ∂
∂x )2 + ( ∂

∂y )2
}
− i(4Z/ρ2

0)
∂
∂z

259 This is just (420) with k �→ 2aZ = 2Z/ρ2
0.

260 See, for example, Chapter 24 in J. Spanier & K. B. Oldham, An Atlas of
Functions ().
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The Gaussian factor

e−ξ2−η2
= exp

{
−x2 + y2

ρ2(z)
[1 + i(z/Z)]

}

is a shared feature of all the ψmn-functions, which give rise therefore to identical
populations of equiphase surfaces (Figure 100). Using Mathematica’s

HermiteH[n,x]

command to evaluate the complex prefactors

gmn(x, y) ≡
(
ρ0

1
ρ

)
1+ 1

2 (m+n) ei[1+ 1
2 (m+n)]ΦHm

( x√
ρ0ρe

i 1
2 Φ

)
Hn

( y√
ρ0ρe

i 1
2 Φ

)
in some low-order cases, we find

g00 = (ρ0/ρ)eiΦ

g10 = (ρ0/ρ)2(x/ρ)e2iΦ

...
g20 = (ρ0/ρ)4(x/ρ)2e3iΦ − 2(ρ0/ρ)2e2iΦ

g11 = (ρ0/ρ)
{
2(x/ρ)

}{
2(y/ρ)

}
e3iΦ

...
g30 = (ρ0/ρ)8(x/ρ)3e4iΦ − 12(ρ0/ρ)2(x/ρ)e3iΦ

g21 = (ρ0/ρ)
{
4(x/ρ)22(y/ρ)e4iΦ − 2(ρ0/ρ)2e3iΦ

}{
2(y/ρ)

}
...

The red terms depart from the result asserted by Kogelnik & Li and quoted by
Svelto256:

gmn = (ρ0/ρ)Hm(x/ρ)Hn(y/ρ) ei[1+m+n]Φ

Their results261 and mine are, however, in precise agreement at z = 0, where
ρ = ρ0 and Φ = 0 give

ψmn(x, y, 0) = Hm(x/ρ0)Hn(y/ρ0) exp
{
−x2 + y2

ρ2
0

}

This striking result acquires special interest from the orthogonality relation∫ +∞

−∞
Hµ(u)Hν(u)e−u2

du =
√
πµ!2µδµν

261 . . .which are not incorrect (as I for awhile supposed) but refer to a distinct
population of beam modes: the point is developed in §§3 & 4 of a companion
essay “Toward an exact theory of lightbeams” ().
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For if we introduce the “normalized Gaussian beam functions”

Ψmn(x, y, z) ≡ 1
ρ0

√
m!2mn!2nπ

ψmn(x, y, z)

then we have∫ +∞

−∞

∫ +∞

−∞
Ψµν(x, y, 0)Ψmn(x, y, 0) exp

{
x2 + y2

ρ2
0

}
dxdy = δµmδνn

which we can use to evaluate the coefficients cmn that enter into the description

ψ(x, y, 0) =
∑
m,n

cmnΨmn(x, y, 0)

of beam structure at the waist . We then write

ϕ(t, x, y, z) = ei(ωt−kz) ·
∑
m,n

cmnΨmn(x, y, z) (429)

=
∑

modes

Gaussian beams of various “modes” (identified by m,n)

to describe the generalized Gaussian beam possessing that prescribed structure
at the waist.

Physically more realistic beam models would be obtained if we
• used the mechanism described on page 321 to turn the beam on/off

(this would entail loss of strict monochromaticity)
• constructed statistical linear combinations of such beams.

But the beams thus constructed could not possibly describe laser beams: they
are scalar beams (“acoustic” beams), whereas physical laser beams must be
endowed with the transverse vectorial properties known to be characteristic of
all electromagnetic radiation. This is a circumstance we were content to set
aside on page 322, but would like now to find some way to accommodate. I
invite you to turn on Mathematica and follow along. . .

Exponential solutions of the “Schrödinger equation” (427) can be described

exp
{
i
[
− px− qy +

p2 + q2

4Z/ρ2
0

z
]}

: all real p, q

and minimal tinkering leads to the discovery that∫∫ +∞

−∞

ρ2
0

4π e
− 1

4 ρ2
0(p

2+q2) · exp
{
i
[
− px− qy +

p2 + q2

4Z/ρ2
0

z
]}

dpdq (430.1)

=
1

[1 − iz/Z]
exp

{
− x2 + y2

ρ2
0[1 − iz/Z]

}

= ψ00(x, y, z) of page 327
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Figure 101: As ρ0 increases the Gaussian g = ρ2
0

4π e
− 1

4 ρ2
0(p

2+q2)

becomes narrower, while at higher frequencies the parabolic term
f = 1

4π (p2+q2)λ becomes shallower. At sufficiently high frequencies
the Gaussian discriminates against the (p, q)-values where f departs
significantly from zero, and it is this circumstance that justifies the
approximation upon which Gaussian beam theory is based.

But (see again the bottom of page 323) 4Z/ρ2
0 = 2k so we have

ϕ00(t, x, y, z) = ei(ωt−kz) · ψ00(x, y, z) with ω = kc (430.2)

=
∫∫ +∞

−∞

ρ2
0

4π e
− 1

4 ρ2
0(p

2+q2) · exp
{
i
[
ωt− px− qy −

(
k − p2 + q2

2k

)
z
]}

dpdq

From

(ω/c = k)2 − p2 − q2 −
(
k − p2 + q2

2k

)2

= −
(p2 + q2

2k

)2

we see that the wave vector


k0

k1

k2

k3


 =




ω/c
p
q

k − [(p2 + q2)/2k]




is not null (as the wave equation ϕ00 = 0 requires) but spacelike: we encounter
here the force of the approximation made on page 322. Notice in this connection
that (because k = 2π/λ)

p2 + q2

2k
=

p2 + q2

4π
· λ : vanishes at high frequencies

so for given ρ0 the approximation becomes better and better as λ ↑ ∞, while
for given λ the approximation becomes progressively better as the Gaussian
e−ρ2

0(p
2+q2) becomes narrower; i.e., as ρ0 becomes larger (see the figure).

We want now to extract from (430) the description of a Gaussian light
beam. To that end we must replace the scalar plane waves encountered at (430)
with electromagnetic plane waves, and that effort presents certain problems.
I will carry this discussion only far enough to expose the problems and some
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Figure 102: To each vector kkk(p,q) we associate a pair of unit
vectors eee(p, q) and fff(p, q) in such a way that

{
k̂kk, eee, fff ≡ k̂kk×eee

}
comprise an orthonormal triad. Let kkk1 and kkk2 be two such wave
vectors. If kkk1 and kkk2 are not parallel then specification of eee1 exerts
no geometrically compelling constraint on the selection of eee2.

points of principle: to carry it farther would to risk becoming lost in bewildering
detail.

Let (430.2) be notated

ϕ00(t, xxx) =
∫∫ +∞

−∞

ρ2
0

4π e
− 1

4 ρ2
0(p

2+q2) · exp
{
i
[
ωt− kkk(p, q)···xxx

]}
dpdq

with

kkk(p, q) ≡


 p

q
k − [(p2 + q2)/2k]


 = k

√
1 +

(
p2+q2

2k2

)2 · k̂kk(p, q)

To every such kkk(p, q) assign unit vectors eee(p, q) and fff(p, q) in such a way that{
k̂kk(p, q), eee(p, q), fff(p, q)

}
is an orthonormal triad. The first point of interest is

that this can be accomplished in infinitely many ways: the triads erected at the
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points of (p, q)-space are independent creations (see Figure 102). Given such
an assignment, form

EEE(t, xxx) =
∫∫ +∞

−∞

ρ2
0

4π e
− 1

4 ρ2
0(p

2+q2) · EEE(p, q) exp
{
i
[
ωt− kkk(p, q)···xxx

]}
dpdq (431)

with
EEE(p, q) ≡ E1(p, q)eee(p, q) + E2(p, q)eiδ(p,q)fff(p, q)

where further arbitrariness enters into the design of the functions E1(p, q),
E2(p, q) and δ(p, q). The constructions

EEEp,q(t, xxx) =
{
E1(p, q)eee(p, q) + E2(p, q)eiδ(p,q)fff(p, q)

}
exp

{
i
[
ωt− kkk(p, q)···xxx

]}
BBBp,q(t, xxx) = kkk(p, q)×EEEp,q(t, xxx)

=
{
E1(p, q)fff(p, q) − E2(p, q)eiδ(p,q)eee(p, q)

}
exp

{
i
[
ωt− kkk(p, q)···xxx

]}

serve—in the approximation (p2 + q2)/2k ≈ 0—to associate a monochromatic
polarized electromagnetic plane wave (propagating in the direction k̂kk(p, q)) with
each point of (p, q)-space, and (431) describes a Gauss-weighted superposition
of such plane waves. The “bewildering detail” to which I have referred arises
(even in the simplest of the cases I have studied) when one undertakes to do
the integration.

“Electromagnetic Gaussian beams”exist, by this account, in infinite variety.
Evidently one must look to the finer particulars of laser design to discover how
the physical device “selects among options,” how to construct acceptable models
of the laser beams encountered in laboratories.

The fields

EEE(t, xxx) =
∫∫ +∞

−∞

ρ2
0

4π e
− 1

4 ρ2
0(p

2+q2) ·EEEp,q(t, xxx) dpdq

BBB(t, xxx) =
∫∫ +∞

−∞

ρ2
0

4π e
− 1

4 ρ2
0(p

2+q2) ·BBBp,q(t, xxx) dpdq

possess a property worthy of notice which I will expose by considering the
superposition of only two electromagnetic plane waves. Let

EEE1(t, xxx) = EEE1 exp
{
i(ωt− kkk1···xxx)

}
: EEE1 ⊥ kkk1

BBB1(t, xxx) = k̂kk1×EEE1 exp
{
i(ωt− kkk1···xxx)

}
describe one monochromatic plane wave, and

EEE2(t, xxx) = EEE2 exp
{
i(ωt− kkk2···xxx + δ)

}
: EEE2 ⊥ kkk2

BBB2(t, xxx) = k̂kk2×EEE2 exp
{
i(ωt− kkk2···xxx + δ)

}
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describe another. Let EEE = EEE1 +EEE2 and BBB = BBB1 +BBB2. Then

EEE ···BBB =
{
EEE1 ···(k̂kk2×EEE2) + EEE2 ···(k̂kk1×EEE1)

}︸ ︷︷ ︸ exp
{
i(2ωt− [kkk1 + kkk2]···xxx + δ)

}
|
= (k̂kk1 − k̂kk2)···(EEE1×EEE2)
�= 000 except under obvious special conditions

shows that, in general, superimposed plane waves do not share the EEE ⊥ BBB
condition characteristic of individual plane waves. In particular: EEE ⊥ BBB will
not be found in the superpositions that produce “beams.”

Let us look to a concrete example. Working from

k̂kk(p, q) ≡ k–1


 p

q
k − [(p2 + q2)/2k]


 in the approximation

(
p2+q2

2k2

)2 ≈ 0

we complete the dimensionless orthonormal triad by writing

eee(p, q) ≡ 1√
p2+q2


 +q

−p
0




fff(p, q) ≡ 1

2k2
√

p2+q2


 p[2k2 − (p2 + q2)]

q[2k2 − (p2 + q2)]
−2k(p2 + q2)


 = k̂kk(p, q)×eee(p, q)

and to achieve tractable integrals set

E1(p, q) = E1+ ·
√
p2 + q2

E2(p, q) = E2+ ·
√
p2 + q2

δ(p, q) = constant

Here + (introduced to cancel the physical dimension of
√

p2 + q2 ) is a constant
of arbitrary value and the dimensionality of length, so E1+ and E2+ have the
dimensionality of electric potential. Working from (431) with k = 2Z/ρ2

0 and

EEE(p, q) = E1+


 +q

−p
0


 + E2+e

iδ


 p[1 − (p2 + q2)/2k2]

q[1 − (p2 + q2)/2k2]
− (p2 + q2)/k




BBB(p, q) = E1+


 p[1 − (p2 + q2)/2k2]

q[1 − (p2 + q2)/2k2]
− (p2 + q2)/k


 − E2+e

iδ


 +q

−p
0




we entrust the
∫∫

’s to Mathematica, who supplies

EEE(t, xxx) = E1+ eee(t, xxx) + E2+e
iδ fff(t, xxx)

BBB(t, xxx) = E1+ fff(t, xxx) − E2+e
iδ eee(t, xxx)

}
(432)
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with

eee(t, xxx) = eG·


−Ay

+Ax
0




fff(t, xxx) = eG·


−Bx

−By
C







(433)

where

eG ≡ exp
{
− x2+y2

ρ2 [1 + i(z/Z)] + i[ωt− kz]
}

is familiar already (see again page 323) from the scalar theory of Gaussian
beams, and where

A = 2iZ2

ρ2
0(Z−iz)2

≡ Aeiα with A =
√

{0}2+{2Z2}2

ρ4
0(Z

2+z2)2

B = −2Zρ2
0(z+iZ)+iZ2[r2−2(z+iZ)2]

ρ2
0(z+iZ)4

≡ Beiβ with B =
√

{stuff}2+{more stuff}2

ρ4
0(Z

2+z2)4

C = 2Z2r2−2ρ2
0Z(Z−iz)

ρ2
0(Z−iz)3

≡ Ceiγ with C =
√

{stuff}2+{more stuff}2

ρ4
0(Z

2+z2)3

I have indicated how the invariable reality of A, B and C comes about, but
have omitted details too complicated to be informative, and have also omitted
(as irrelevant to the purposes at hand) explicit description of the phase factors
α, β and γ (which could be expressed as the arctangents of the obvious ratios).
Notice that the functions described above depend upon x and y only through
r2 ≡ x2 + y2; they are, in short, axially symmetric. Notice also that
[A ] = [B ] = (length)−2 while [C ] = (length)−1.

Returning now with (433) to (432), we have EEE(t, xxx) = EEE1(t, xxx) +EEE2(t, xxx)
with

EEE1 = E1+e
−(r/ρ)2· ei{(ωt−kz)−(r/ρ)2(z/Z)}


 Aeiα


−y

+x
0







EEE2 = E2e
iδ+e−(r/ρ)2· ei{(ωt−kz)−(r/ρ)2(z/Z)}


 Beiβ


−x

−y
0


 + Ceiγ


 0

0
1
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The associated magnetic fields are

BBB1 = E1+e
−(r/ρ)2· ei{(ωt−kz)−(r/ρ)2(z/Z)}


 Beiβ


−x

−y
0


 + Ceiγ


 0

0
1







BBB2 = E2e
iδ+e−(r/ρ)2· ei{(ωt−kz)−(r/ρ)2(z/Z)}


−Aeiα


−y

+x
0







It is understood that to extract the physical fields, and before we assemble such
quadratic constructions as (field)···(field) and (field)×(field), we must make the
replacements

ei(stuff) �−→ cos(stuff)

That done, we obtain finally

EEE1 = E1+e
−(r/ρ)2


 A cos(ϑ + α)


−y

+x
0







EEE2 = E2+e
−(r/ρ)2


 B cos(ϑ + β + δ)


−x

−y
0


 + C cos(ϑ + γ + δ)


 0

0
1







BBB1 = E1+e
−(r/ρ)2


 B cos(ϑ + β)


−x

−y
0


 + C cos(ϑ + γ)


 0

0
1







BBB2 = E2+e
−(r/ρ)2


−A cos(ϑ + α + δ)


−y

+x
0







with ϑ ≡ ωt − kz − (r/ρ)2(z/Z). It is immediately evident that at every
spacetime point

EEE1 ⊥ EEE2 , BBB1 ⊥ BBB2

EEE1 ⊥ BBB1 , EEE2 ⊥ BBB2

but from

EEE ···BBB = (EEE1 +EEE2)···(BBB1 +BBB2)

= E1E2+
2e−2(r/ρ)2

{
r2

[
B2 cos(ϑ+β) cos(ϑ+β+δ)

−A2 cos(ϑ+α) cos(ϑ+α+δ)
]

+C2 cos(ϑ+γ) cos(ϑ+γ +δ)
}

�= 0 except under non-obvious special conditions: note, however, that
↓
= 0 as r → ∞ because the fields die at points far from the beam axis

we see that—consistently with the remark developed on page 332—the net fields
EEE and BBB are typically not perpendicular: at axial points (r = 0) they are, in
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fact, parallel ! The energy flux and momentum density at the spacetime point
are proportional to

EEE×BBB = (EEE1 +EEE2)×(BBB1 +BBB2) ≡ e−2(r/ρ)2 · FFF

where according to Mathematica

F1 = xAC
[
E2

1 cos(ϑ + α) cos(ϑ + γ) + E2
2 cos(ϑ + α + δ) cos(ϑ + γ + δ)

]
− yBCE1E2

[
cos(ϑ + β + δ) cos(ϑ + γ) − cos(ϑ + β) cos(ϑ + γ + δ)

]
F2 = yAC

[
E2

1 cos(ϑ + α) cos(ϑ + γ) + E2
2 cos(ϑ + α + δ) cos(ϑ + γ + δ)

]
+ xBCE1E2

[
cos(ϑ + β + δ) cos(ϑ + γ) − cos(ϑ + β) cos(ϑ + γ + δ)

]
F3 = r2AB

[
E2

1 cos(ϑ + α) cos(ϑ + β) + E2
2 cos(ϑ + α + δ) cos(ϑ + β + δ)

]
This is of the design

FFF = a


x

y
0


 + b


−y

+x
0


 + c


 0

0
1




= FFF radial + FFF tangential + FFF axial

where the vectors FFF radial stand normal to the z-axis (beam-axis) and are of
constant magnitude on circles concentric about that axis, the vectors FFF tangential

are (also constant on but) tangent to such circles and have � or � handedness
according as b ≷ 0, and the vectors FFF axial (also constant on such circles) run
parallel to the z-axis. The “constants” a, b and c are in fact horribly complicated
functions of the variables

{
t, z, r

}
and of the parameters

{
ω, ρ0, Z,E1,E2, δ

}
.

We are in position now to state that the momentary momentum density of
the beam field at any designated point xxx can be described (see again page 216)

PPP = 1
ce

−2(r/ρ)2FFF

We observe that
• PPP vanishes far from the beam axis because of Gaussian attenuation
• PPP vanishes on the beam axis by the design of a, b and c

• field momentum traces a divergent spiral in the near neighborhood of the
beam axis unless b = 0.

The angular momentum density of the beam field is given by262

LLL = xxx×PPP = 1
ce

−2(r/ρ)2


−bz


x

y
0


 + (az − c)


−y

+x
0


 + br2


 0

0
1







= LLLradial + LLLtangential + LLLaxial

262 Don’t be confused by the fact that c is used here to mean two entirely
different things.



Optical beams 337

Figures 103 & 104: The upper figure portrays the spiroform
deployment of the momentum in the electromagnetic field of the
Gaussian beam described in the text. Displayed below is the resulting
angular momentum density (presented as a function of x and y at
the beam waist: z = 0). The figures show that/why it makes sense to
say that “the angular momentum lives at the fringes of the beam.”
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The first two components (by an elementary symmetry argument) can make no
net contribution to the total angular momentum of the beam, which is given
therefore by

LLL = L


 0

0
1


 with L =

∫∫∫
1
ce

−2(r/ρ)2br2 dxdydz

We notice that L vanishes if b = 0, and that this happens when δ = 0, for in
the latter circumstance the equations at near the top of page 336 assume the
much-simplified form

F1 = xAC
[
E2

1 + E2
2

]
cos(ϑ + α) cos(ϑ + γ) + no y-term

F2 = yAC
[
E2

1 + E2
2

]
cos(ϑ + α) cos(ϑ + γ) + no x-term

F3 = r2AB
[
E2

1 + E2
2

]
cos(ϑ + α) cos(ϑ + β)

One occasionally encounters the claim that “the angular momentum
transported by a laser beam lives at the fringes of the beam,” but in support
of that claim authors who possess only a scalar theory of beams must argue
rather vaguely that

i) beam angular momentum must arise from momentum circulation
ii) there can be no circulation at the axis of an axially-symmetric beam
iii) all PPP-circulation must therefore occur between the axis and the remote

regions where the EEE and BBB fields have fallen off to zero—in short: “at the
fringes” of the beam.

My effort has been to carry a vector theory of beams far enough to illuminate
the details of the matter. Having achieved that objective, I must be content
now to abandon my little “electromagnetic theory of beams”. . . but feel an
obligation to list some of the respects in which the theory remains incomplete:

• It should be feasible (by the method sketched on page 321) to turn such
beams on and off; i.e., to construct laterally confined quasi-monochromatic
Gaussian wavepackets—“classical photons,” if you will.

• It should be feasible, moreover, to construct trains of such wavepackets,
and to describe the coherence/polarization properties of such trains.

• One would like to be in position to describe the energy, momentum and
angular momentum transported by such a “classical photon,” and to
identify conditions under which they stand in the quantum relationships

E = cP = ωL

• To that end one would need to clarify certain salient properties of and
interrelationships among the complicated functions a, b and c.

• Identical values of E1, E2 and δ were assigned to each of the plane waves
from which ourGaussian beams were assembled. Do the Stokes parameters
implicit (by (399)) in

{
E1,E2, δ

}
speak usefully about the polarization

properties of the assembled beam?
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It should be borne always in mind that the theory sketched above proceeds
from an inoffensive approximation (page 322) and—within the bounds of that
approximation—from a convenient specification (page 333) of the manner in
which orthonormal vectors will be attached to k̂kk -vectors (and weighted). The
theory is rich enough to support easily the notion of “higher beam modes,” but
this question remains open: Is the theory—as I suspect—rich enough to account
for the observed properties of the optical beams encountered in laboratories?


